Nuclear Parton distributions

... and beyond

Outstanding issues and *uncertainties*

Fred Olness

SMU

Conspirators: P. Nadolsky, M.Guzzi, K. Park, I Schienbein, J.-Y. Yu, Karol Kovarik, T.P. Stavreva J. Owens, J. Morfin, C. Keppel, 3rd International Workshop on Nucleon Structure at Large Bjorken x October 13-15, 2010 Jefferson Lab

14 October 2010 JLab

Fred Olness

14 October 2010 JLab

Search for "new physics" requires dependable foundation

3

New Data Sets

4

Deeply Inelastic Scattering

Drell-Yan

NuTeV

Neutrinos on Iron $\langle E_v \rangle = 120 \text{ GeV}$ 860K nu 230K nubar 1170+966 points

Chorus Neutrinos on lead 0.01 < x < 0.7 $10 < E_v < 200 \text{ GeV}$ $p_\mu > 5 \text{ GeV}$ 412 points

E866 NuSea:

800 GeV proton beam on hydrogen & deuterium 140K DY muon pairs $M_{\mu\mu}$ >4.5GeV (*Hi Mass*) 0.020 < x < 0.345 184+191 points Why are trends different for DIS vs. DY

See talk by Jorge Morfin

6

"Thus, these results suggest on a purely phenomenological level that the nuclear corrections may well be very similar for the nu and nubar cross sections and that the overall magnitude of the corrections may well be smaller than in the model used in this analysis."

> χ =7453/5062 Reference Fit χ =6606/5062 Mod Nuclear Fit

Owens, Huston, Keppel, Kuhlmann, Morfin, Olness, Pumplin, Stump. Phys.Rev.D75:054030,2007.

Fred Olness

14 October 2010 JLab

Page 6

Why are trends different for DIS vs. DY

See talk by Jorge Morfin

7

"Thus, these results suggest on a purely phenomenological level that the nuclear corrections may well be very similar for the nu and nubar cross sections and that the overall magnitude of the corrections may well be smaller than in the model used in this analysis."

> χ =7453/5062 Reference Fit χ =6606/5062 Mod Nuclear Fit

Owens, Huston, Keppel, Kuhlmann, Morfin, Olness, Pumplin, Stump. Phys.Rev.D75:054030,2007.

Fred Olness

14 October 2010 JLab

Where do nuclear corrections come

from???

8

Where do Nuclear Corrections come from ???

carved in stone

Discovered by the French in 1799 at Rosetta, a harbor on the Mediterranean coast in Egypt. Comparative translation of the stone assisted in understanding many previously undecipherable examples of hieroglyphics.

14 October 2010 JLab

Include Nuclear Dimension Dynamically

11

Extended CTEQ Framework

- CTEQ style global fit extended handle various nuclear targets
- ✓ CTEQ Data + nuclear DIS & DY [~15 targets; ~2000+ data]
- A-dependence modeled;
 NLO fits work well

A-Dependent PDFs

$$xf(x) = x^{a_1}(1-x)^{a_2}e^{a_3x}(1+e^{a_4}x)^{a_5}$$

$$a_i \to a_i(A)$$

 $a_k = a_{k,0} + a_{k,1}(1 - A^{-a_{k,2}})$

Nuclear PDFs from neutrino deep inelastic scattering.

I. Schienbein, J.Y. Yu,

C. Keppel, J.G. Morfin, F. Olness, J.F. Owens. Phys.Rev.D77:054013,2008.

_					x ²	x ²	x ²	
rk	Observable	Experiment	Ref.	# data	AIL	AIM	AIA	ID
	FA/FD:		8					
	He/D	SLAC-E139	[18]	18	9.8	6.82	6.28	5141
	0.000100	NMC-95.re	[19]	16	35.6	16.91	18.31	5124
		Hermes	[20]	92	134.0	72.14	71.05	5156
	Li/D	NMC-95	[21]	15	45.0	18.80	19.68	5115
	Be/D	SLAC-E139	[18]	17	52.7	21.48	20.75	5138
	C/D	EMC-88	[22]	9	10.3	7.29	7.11	5107
	0.49509	EMC-90	[23]	2	0.2	0.14	0.11	5110
		SLAC-E139	[18]	7	31.3	4.06	4.51	5139
		NMC-95.re	[19]	16	13.9	16.12	16.62	5114
		NMC-95	[21]	15	13.9	7.13	7.26	5113
		FNAL-E665-95	[24]	4	23.4	8.81	8.29	5125
	N/D	BCDMS-85	[25]	9	12.1	6.94	7.26	5103
	- / -	Hermes	[20]	92	94.5	62.42	58.94	5157
	A1/D	SLAC-E049	[26]	18	32.2	20.42	20.38	5134
	0.000	SLAC-E139	[18]	17	22.12	6.50	8.05	5136
	Ca/D	EMC-90	[23]	2	5.5	1.47	1.37	5109
		SLAC-E139	[18]	7	14.2	2.07	1.53	5140
		NMC-95 TR	[19]	15	48.6	12.75	13.74	5121
		FNAL-E665-95	[24]	4	16.2	7.88	7.67	5126
	Re/D	BCDMS-85	[26]	5	6.3	3 01	4 30	5102
	10/2	BCDMS-87	[27]	10	35.0	8 58	0.81	5101
		SLAC-R049	[28]	14	8.8	10 30	6.04	6131
		SLAC-E139	[18]	23	434	35 14	36.31	6132
		SLAC-R140	[00]	6	16.9	2 02	4.87	6122
	GUD	EMC-88	[20]	0	7 1	4.74	4.47	5106
	00,0	RMC-02(addandum)	[20]	10	14.4	5 12	6.80	5100
		EMC-02(chariat)	[20]	0	0.8	6 18	6.62	6105
	Kr/D	Hermos	[00]	84.	120.7	64.62	62.08	6168
	Ar/D	ST. AC-P120	[10]	7	220.1	4.04	202.00	6126
\imath_5	Se/D	RMC-BISB	[20]	r B	22.0	10.82	2.00	5108
0	No/D	PNAT PSSS 02/om mub)	[22]	4	40.3	18.02	20.08	6127
	Audo	FIVAL-E005-92(em cut)	[10]	4	4.0	0.00	7.80	6197
	AU/D DL/D	DIAC-DIAN	[10]	10	40.0	0.22	7.08	6100
	PO/D	FIVAL-E000-80	[24]	4	20.3	1.11	ି7. 4 0 ੱ	9128
	F3/F3							
	Be/C	NMC-96	[32]	15	14.3	5.87	5.82	5112
	Al/C	NMC-96	[32]	15	14.1	5.17	5.19	5111
	Cs/C	NMC-95	[19]	20	21.7	31.47	35.73	5120
	100	NMC-96	[32]	15	19.8	5.39	5.31	5119
	Fe/C	NMC-95	[32]	15	25.9	9.54	9.35	5143
	Sn/C	NMC-96	[33]	144	312.5	102.82	96.29	5159
	РЪ/С	NMC-96	[32]	15	13.4	7.31	8.09	5116
	C/Li	NMC-95	[19]	20	49.7	21.82	20.37	5123
	Ca/Li	NMC-95	[19]	20	38.3	24.62	23.53	5122
	$\sigma_{\rm DV}^{\rm pA} / \sigma_{\rm DV}^{\rm pA'}$:							
	C/D	FNAL-E772-90	[34]	9	14.3	7.26	6.88	5203
	Ca/D	FNAL-E772-90	[34]	9	14.1	3.81	3.33	5204
	Fe/D	FNAL-E772-90	[34]	9	21.7	3.71	3.15	5205
	W/D	FNAL-E772-90	[34]	9	49.7	11.07	11.27	5206
	Fe/Be	FNAL-E866-99	[35]	28	38.3	29.95	29.33	5201
	W/Be	FNAL-E866-99	[35]	28	38.3	25.54	25.30	5202
	Total			058	1514.4	777.0	768 2	
10 JI	al	1	28 E	800	1014.4	111.0	100.0	

Nuclear Corrections: Charged Lepton (γ) Case

Ooooops!

Nuclear Corrections: Compare Neutrino and Charged Lepton DIS 17

How do we resolve this puzzle??? ... you're missing lots of information ... 18

Myth #1: Nuclear Corr's are all the same

Determine Nuclear modifications separately for Neutral and Charged Currents

Myth #2: It <u>doesn't</u> matter

Can't we just drop the data set????

6 Structure Functions: $\{F2, F3, R\} \otimes \{nu, nubar\}$

... you're missing lots of information ...

E.g., CTEQ6.5 and beyond <u>do not</u> use heavy target v-DIS data

PDF sets used for Tevatron & LHC are without this flavor differentiation

... *except*, for the dimuon data to resolve the strange PDF

v-DIS is key ingredient for PDF flavor differentiation!!!

Could there be a

"compromise" fit

... some recent results by led by Karol Kovarik

14 October 2010 JLab

19

Comparison: Charged Lepton and Neutrino DIS

http://www.physics.smu.edu/olness/ftp/misc/npdf/fred_v2.gif

Comparison: Charged Lepton and Neutrino DIS

Х

Comparison: Charged Lepton and Neutrino DIS

Weight	Name of fit	$l^{\pm}A$ data	$\chi^2 (/\mathrm{pt})$	νA data	$\chi^2 \ (/\mathrm{pt})$	total χ^2 (/pt)
w = 0	decut3	708	638(0.90)	-	-	638 (0.90)
w = 1/7	glofac1a	708	645 (0.91)	3134	4710 (1.50)	$5355\ (1.39)$
w = 1/4	glofac1c	708	654 (0.92)	3134	4501 (1.43)	$5155\ (1.34)$
w = 1/2	glofac1b	708	$680 \ (0.96)$	3134	4405 (1.40)	5085(1.32)
w = 1	global2b	708	736(1.04)	3134	4277(1.36)	5014(1.30)
$w = \infty$	nuanua1	-	-	3134	4192(1.33)	4192(1.33)

Fred Olness

χ^2 /DOF Per Experiment

Comparison: Charged Lepton and Neutrino DIS

Weight	Name of fit	$l^{\pm}A$ data	$\chi^2 (/\mathrm{pt})$	νA data	$\chi^2 \ (/\mathrm{pt})$	total χ^2 (/pt)
w = 0	decut3	708 🗸	638(0.90)	- X	-	638(0.90)
w = 1/7	glofac1a	708 🗸	645 (0.91)	3134 X	4710 (1.50)	$5355\ (1.39)$
w = 1/4	glofac1c	708 🗸	654 (0.92)	3134 X	4501(1.43)	5155(1.34)
w = 1/2	glofac1b	708 🔨	680 (0.96)	3134 X	4405 (1.40)	5085(1.32)
w = 1	global2b	708 X	736(1.04)	3134 🗸	4277(1.36)	5014(1.30)
$w = \infty$	nuanua1	- X	-	3134 🔨	4192(1.33)	4192(1.33)

Could charged lepton and neutrino results be compatible?

"Thus, nuclear effects in vA DIS are in line with those extracted from charged lepton DIS and Drell-Yan dilepton production."

Hannu Paukkunen, DIS10

Paukkunen & Salgado, arXiv:1009.3143

χ^2/DOF	CTEQ6.6	$CTEQ6.6 \times EPS09$
NuTeV	1.51	1.05
CHORUS	1.15	0.79
CDHSW	1.10	0.71

nCTEQ with Uncorrelated Errors

χ^2/DOF	$Q^2 > 4$	$Q^2 > 5$	$Q^2 > 5 + \text{gluon}$
charged lepton	1.16	1.13	1.06
neutrino	1.00	0.95	0.98
Total	1.02	0.99	1.00

Uncorrelated Errors: $\chi^2/DOF \sim 1$

8-Fe/D9-Cu/D10-Ag/D11-Sn/D12-Xe/D13-Au/D14-Pb/D15-Be/C16-Al/C17-Ca/C18-Fe/C19-Pb/C20-C/Li21-Ca/Li $22 - He/D - Q^2$ $25-N/D - Q^2$ $23-Kr/D - Q^2$ $24-Sn/C - Q^2$ 26-C/D - DY27-Ca/D - DY 28-Fe/D - DY 29-W/D - DY 30-Fe/Be - DY $32 - F_2^D$ 31-W/Be - DY $33-\nu Pb$ $34 - \bar{\nu} Pb$ $35-\nu Fe$ $36-\bar{\nu}\mathrm{Fe}$ 37-CCFR ν 38-NuTeV ν 39-CCFR $\bar{\nu}$ 40-NuTeV $\bar{\nu}$

Why should the LHC $\mathbf{0}$ Tevatron care???

Fred Olness

14 October 2010 JLab

Conclusions

Nuclear Corrections for PDFs Many open questions; Key for flavor differentiation Need input, both experimental and theoretical

Improvements possible/needed in many areas Increased attention in recent years ... see talks by **Kumano, Petti**, ...

These measurements are foundation for PDFs Any "new physics" must be calibrated against "old physics" Low Q^2 measurements set Boundary Conditions for Hi Q^2

Forms the foundation for Tevatron & LHC Physics

14 October 2010 JLab

LEFT OVER

Search for "new physics" requires dependable foundation

Measurements depend on this foundation—that is what we use to calibrate the search for "new physics"

Will present some examples where the foundations might be improved

W/Z at LHC & the race for the Higgs

Search for the Higgs Particle

Status as of March 2009

90% confidence level 95% confidence level

NuTeV Comparison with Theory

Fred Olness

	${f F_2^A}/{f F_2^{A'}}$:					1.7	<u>a /a</u>	NIMCLOF	[00]	20
ID	Observable	Experiment	Ref.	# data				NMC-96	[31]	15
1	He/D	SLAC-E139	[9]	18		18	$\rm Fe/C$	NMC-95	[31]	15
		NMC-95,re	[23]	16		19	Pb/C	NMC-96	[31]	15
2	Li/D	NMC-95	[24]	15		20	C/Li	NMC-95	[23]	20
3	$\mathrm{Be/D}$	SLAC-E139	[9]	17		21	Ca/Li	NMC-95	[23]	20
4	C/D	EMC-88	[25]	9		22	He/D	Hermes	[32]	92
		EMC-90	[26]	2		23	Kr/D	Hermes	[32]	84
		SLAC-E139	[9]	7		24	$\mathrm{Sn/C}$	NMC-96	[33]	144
		NMC-95,re	[23]	16		25	N/D	Hermes	[32]	92
		NMC-95	[24]	15		32	D	NMC-97	[34]	275
		FNAL-E665-95	[27]	4			Total:			862
5	N/D	BCDMS-85	[6]	9	L [002
6	Al/D	SLAC-E049	[28]	18		ID	$\sigma_{\mathbf{DY}}^{\prime}/\sigma_{\mathbf{DY}}^{\prime}$:	E	Def	// .lt.s
		SLAC-E139	[9]	17		ID	Observable	Experiment	Ref.	# data
7	Ca/D	EMC-90	[26]	2		26	C/D	FNAL-E772-90	[35]	9
		SLAC-E139	[9]	7		27	Ca/D	FNAL-E772-90	[35]	9
		NMC-95,re	[23]	15		28	$\rm Fe/D$	FNAL-E772-90	[35]	9
		FNAL-E665-95	[27]	4		29	W/D	FNAL-E772-90	[35]	9
8	Fe/D	BCDMS-85	[6]	6		30	${ m Fe}/{ m Be}$	FNAL-E866-99	[36]	28
		BCDMS-87	[7]	10		31	W/Be	FNAL-E866-99	[36]	28
		SLAC-E049	[5]	14			Total:			92
		SLAC-E139	[9]	23	ſ		$\mathbf{d}\sigma^{ u\mathbf{A}}/\mathbf{dxdy}$:			
		SLAC-E140	[10]	6		ID	Observable	Experiment	Ref.	# data
9	Cu/D	EMC-88	[25]	9		33	Ph	CHOBUS ν	[37]	412
		EMC-93(addendum)	[29]	10		34	Ph	CHOBUS $\bar{\nu}$	[37]	412
		EMC-93(chariot)	[29]	9		35	Fe	NuTeV V	[16]	1170
10	Ag/D	SLAC-E139	[9]	7		36	Fe	NuTeV $\bar{\nu}$	[16]	066
11	$\mathrm{Sn/D}$	EMC-88	[25]	8		37	Fo	$CCFB \mu di-muon$	[38]	44
12	Xe/D	FNAL-E665-92(em cut)	[30]	4		01 20	Fe	NuToV μ di muon	[20]	44
13	Au/D	SLAC-E139	[9]	18		00 20	ге		[06] [20]	44
14	Pb/D	FNAL-E665-95	[27]	4		39	re Fa		[30]	44
15	$\mathrm{Be/C}$	NMC-96	[31]	15	 [40	гe	INUTEV ν di-muon	[38]	42
16	$\mathrm{Al/C}$	NMC-96	[31]	15			Total:			3134

Conclusions

